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Abstract. This paper investigates the problem of uncertain nonlinear state
observation in a nuclear reactor when only the input and the output are available.
The use of a differential neural network observer with sliding mode learning law is
suggested. A very simplified model of the system is initially employed for off-line
training of the neural network. When this process of training has finished, the

observer can dispense with mathematical model completely and can rea|
line state estimation within small mar.

cfficiency of this technique is illustral

c lize the on-
2in of error despite uncertainty and noise. The
ted by simulation.

1. Introduction

Nuclear reactors are inherently nonlinear and very complex systems with time-varying
parameters depending on a level power, fuel burnup, Xenon isotope production, among
others factors. When, in this kind of systems, state observation is required, it is mostly
used for two purposes: feedback control and fault detection. In these tasks, the observer
employed has often been linear [1), [2]; consequently, its performance is only
satisfactory in a small neighborhood of the operation point of the reactor. Nevertheless,
if large variations of the system variables are presented, the previous option is not
effective any more and some nonlinear state observer is required. In real situations.
state estimation turns out to be a non trivial problem because, besides nonlinearity,
variation of parameters, uncertainty and inclusive measurement noise must be
considered. Moreover, even though parameters were constant, peculiarity of nuclear
reactor model prevents its transformation into the, so-called, companion form; hence,
common robust techniques such as high gain observers [3] can not be applied.
Nonetheless, under these conditions, it is still possible to obtain an acceptable
observation using others robust techniques among which it is worth mentioning neural
networks (NN) and sliding modes (SM).

NN are an approach that has generated great enthusiasm as a consequence of their
capability of functioning adequately despite a partially (or inclusive totally) incomplete
information about plant model. NN could be classified as static (feedforward) or as
differential (recurrent) ones [4]. In the first kind of networks. a system dynamics is
approximated by a static mapping: therefore, the network outputs are uniquely
determined by the current inputs and the weights. In contrast, differential neural
networks (DNN) incorporate feedback in their structure. So. they overcome many
problems associated with first ones such as global extrema search. Furthermore. DNN
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have better properties of approximation.

In recent years. it has been proposed to use neural networks in nuclear reactors
particularly for control [5-9] but generally the networks employed have been static or
else. in many cases. they have lacked a rigorous proof of stability.

On the other hand. during the last two decades, SM have emerged as other
powerful tool for control, identification, and estimation in uncertain environments.
Basically. SM consist of the application of a discontinuous control action for reaching
and maintaining the dynamics of a system on the, so-called, sliding surface. The major
advantages of SM are: low sensitivity to plant parameter variations and disturbance,
fast transient behavior. and exponential convergence [10]. However. despite these
advantages, only a few applications of this technique have been reported in_ nuclear
literature. So. in [11] a SM observer is used for estimating the external reactivity and
the xenon concentration. In [12] is discussed a feedback controller based on SM
observer for a space nuclear reactor. .

In spite of fruitful research in DNN and SM. very few authors have considered the
possibility of combining the advantages from these two techniques for obtaining an
observer with better performance [13] and none, to our knowledge. has considered

apply this “sliding ncuro observer™ to field of nuclear processes. Thereby. in this paper,
it is suggested to estimate nuclear reactor states using a special kind of DNN which
incorporate a switching correction term in their structure and al_so a slld{ng rpode
learning law. Since only the input and the output of reactor are a\{alla_bl.c: a Sln?pllﬁcd,
but imprecise, mathematical model of system is utilized for off-line initial training of
DNN. When this process of training has finished, the observer can work without any
mathematical model and can realize the on-line state estimation within small margin of
error despite uncertainty and noise. The workability of suggested approach is illustrated

by a simulation example.

2. Mathematical Model

In general, the nuclear reactor dynamics is described by the following so-called point
kinetics equations with six delayed neutron precursor groups [14]:

.y o
0, = P/A n+ Y AC,, )
i=1

¢, = i m=ACs =156 )

where n, is the neutron power (W), C,, is the power of the ith group delayed neutron
precursor (W). p, is the total reactivity, A is the effective prompt neutron lifetime (s), 4,
is the radioactive decay constant of ith group neutron precursor (s, B is the fraction
of ith group delayed neutrons, and fis the total delayed neutron fraction (,8=Z", B). It
is important to mention that the six group point kinetics equations (1) and (2) are in
reality a set of seven ordinary differential equations; accordingly, their manipulation
can result difficult. However, it is possible to reduce the system order by combining the
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siX precursor groups into an cquivalent single group. First, let us define the effective
precursor radioactive decay constant 4 as

1 6
A=A, 3)
ﬂ =1
Next, using (3). the equations (1) and (2) can be simplified into a second order system
given by
n, =p’;ﬂn,+AC, )
e fn, _dc, ®)

where C, is the equivalent power of all delayed neutron precursors.
Now then. the total reactivity has two com

ponents, the external reactivity Pexrs and
the internal reactivity p,,,, that is,

Pr = Pext.t + Pins (6)

The external reactivity is related to the position of the control bars. Thus, the
external reactivity is considered as the control input of the system. The relationship
between the external reactivity and the bar position can be represented through an
empirical static function. On the other hand, the internal reactivity is associated with
the effects of the temperature feedback. These effects can be described [14] by

Pints = _aKnl + aK”O = WPints (@)

where a the is negative temperature reactivity coefficient (°C™"), X is the reciprocal of
the reactor heat capacity (°C/(Ws)), 7 is the reciprocal of mean time for heat transfer
to the coolant (s™'), and n, is the initial power when the external reactivity is equal to
zero. For suitability, we consider in this work that np=1W. The equations (4), (5). and
(7) constitute a very simplified third order mathematical model of a nuclear reactor.
The nominal parameters corresponding to a TRIGA MARK 111 research reactor located
at National Institute of Nuclear Rescarch of México [15] are as follows:
a=0.01359875°C",  B=6433x10°,  A=0.40245". A=38us, r=0.2s",
K=1/5.21045x10" C/(Ws) whereas the ranges for the variables of the same reactor
operating on standard conditions are: n, from IW to 1.IMW, C, from 420.72W to
462.79MW, p,,, from -1.4354 to 0, Pexqy from 0 to 1.4354. Defining the state
coordinates and the control input as Xpa o= My X240= Cpy X34 2= Pgss Uy 2= Pexsse the
equations (4), (5), and (7) can be represented in the standard state variable form

B

1 1
X, =="x, A, + x, X2+ X, u
1Lt A 11 2.1 A L3 A Lt

%= A.\',‘,—/{\'Z_, (8)

X34 =—aKx,, +aKny - x5,
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3. Observability Analysis

stem described by (for the sake of bricfness, system (9)

Consider the nonlincar nominal sy
be casily extended to MIMO systems)

is SISO but results presented in this work can

X, = f(.\',.u,.l), y,=Cx, )

€M is the system output, u, €N s

where x, € Rt" is the system state at timer20.y
xRxRY > R".

. - .
the control action. C € ®"" is an output matrix and f R

ervable within the interval time [ty, 1],

Definition 1. The system (9) is said to be obs i
t,>1o when the output data y(1) determine the initial state x(1o) completely.

Likewise, let us define the extended output vector as

(n=1) r
Y, = [}': Y R (10)
and the observability matrix
Y,
Q== (1)
ox,

Results on observability of system (9) are presented in [16] and references there. These
results can be summarized by the following:
Corollary 1. The system (9) is locally observable in a neighborhood of the point x, at
timet, if

detQ#0 (12)

We will apply corollary 1 to (8) before trying to realize some observer design for the
nuclear reactor. Since in this work it is considered that the only measurable state of (8)
is x,,, then the system output is defined as ;7= Xy Or else, in terms of the state vector,
y, =Cx, where C :=[100]and x, e 9% . Next, let us calculate the corresponding

extended output vector and observability matrix for (8)

. . S : o
)1 = ["1 Vi -Vl] A [XLI Xl.l xl,l}r
| 0 0
N __B 1 ) 7 1
[Pl e S vl U L R G
0%y, oxX), oy,

Q
=
~

L TH] 0x3,
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In accordance with corol‘lary 1. one can deduce that the nominal system (8) is not
obscrvable over the manifold

52

(2  w i A 3
detQ ‘[ ATR TR Jxl.t i A2 X1a%3, F A2 VLT R =0 (13)

Remark 1. Notice that the manifold (13) is a two-dimensjonal surface in a 3-dimensio-
nal space and, hence. practically any dynamic trajectory (if the control is not a specially
oriented for maintaining the dynamics within this manifold) will cross this manifold
Joosing the observability practically almost everywhere.

4. Differential Neural Network

4.1. Basic assumptions

The uncertain nonlinear system, which states will be reconstructed. is given by
X, = f(x,.u,.l)+ S Vi =Cx, + &, (14)

where x,, v, u,, /. and C are as in (9) but now the vectors &, and &, characterize mixed
uncertaintics that may include both unmodelled dynamics and deterministic
disturbances. Notice that an alternative representation for (14) always could be

%= A%, + W(o)a(x,)+ B(o)u, +7 (15)
where the parameters A© e 7 WO eqmn - plo) g ggmi are subjected to
adjustment, the activation vector-function o() := [a,(). 0',,(~)]’ has sigmoidal
components

-1
o'j(x) =ag| 1+ b, cxp[~Zcqxl_,) forj=1..... n (16)
J=1

and f, = f(x,.u,.1)- A(")x, - H'(o)a(x,)— BO, +&,.

Hereafier it is supposed that the system (14), aside from observability condition
given in corollary 1. comply with the following assumptions:

A) System (14) satisfies the (uniform on ) Lipschitz condition, that is,

Sxor)- Seva) < Lix=z+L,u-v
xzeR" uveR"; 0<L,.L, <o

B) Admissible controls are bounded. U*"" :={u : ui = u"/\uSv(,<w}. A>0.
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Besides. # is such that does not violate the existence of the solution to ODE (14).
C) There exists a control function u, belonging to the admissible control action set

U™ defined in assumption B, such that the uncertain nonlinear system (14) is

quadratically stable, namely, there exists a Lyapunov function V' (x) such that

av . 2 5
= x, £ —-mx,°, n > 0 whenever u, =u:.
D) The mixed uncertainties &, and &, are bounded, i.e., 51‘:,\, =Y,

*J

A >0, j= 1,2 (these matrices “normalize” the components to make possible
,

to work with values of different physical nature). Besides, &, and &, donot

violate the existence of the solution to ODE (14).

E) A® is Hurwitz and the pair (A(o),C) is observable.

F) 7, isbounded, specifically, 7, ; <hH+hx ‘2\,, Ay>0, Ay>0.
s
It is worth mentioning that the preceding assumptions are generally met for physically

meaningful dynamic systems and a nuclear reactor is not exception.

4.2. Observer structure
Let us define DNN observer as follows:

—;: 2, = A9 + W0 (2,)+ B, + K [y, - C& ]+ Kosignly, - C)) - (17)
where £, € R" is the estimated state. W, € RN™" is the weight matrix and

1ifz>0
sign(z) =4 -1ifz<0 (18)
e[-11]ifz=0

One can see that the structure of the observer (17) consists of three parts (sce fig. 1):
e the neural network identifier with a single output layer

A9 1w o(z,)+ B,
o the Luenberger tuning term K,[v, = C,.?,] 2

e the sign correction term Kysign(y, —Cg,) which is intended to reduce the

output external noise effect associated with real data. In general, this term improve
the global performance of the observer particularly when the output error
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Lv,—C.?,] is small and consequently the Luenberger term is not effective
anymore.
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Fig. 1. Structure of DNN observer.

4.3. Off-line training of the network

Before using DNN observer (17) on-line, it is necessary to select adequate values for
A(o), B9 and WO This preliminary process of selection is known as off-line
training of DNN. If the off-line knowledge of all states of (14) is not available then at
least it is necessary to resort to a simplified and inclusive imprecise model of (14) as
the generator of N training data Uy, 5%, )I‘:,‘ ~ - Basically, the training process consists
of two stages: First, using “try-to-test” method. values for A and B©) are proposed
such that assumption £ is satisfied. Next, using a least square method, the best nominal
value of W9 is determined. Let us define this value as wblr =

N v 5 » - +
min Z ]I, = l)h )’,\ I [0{'\1,) o 0'(.\',»\ )] where Y:‘ = ".'tl = A(O)-"l. = B(O)":,
k=1

(here [-]" means pseudoinverse in Moore-Penrose sense). Starting from 1y, we are ready
to initiate the learning (or DNN adaptation) process.

4.4. Learning law

The weight matrix 1¥, is adjusted by the the following learning law:
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;{/(' ) - —ky, S(' /)sn.gn(W(' 1)) i.j=ln
4, = NsPWlo(s, ) +2¢]CNsPW,5(%,)

S(' ')_1/'1 ij=1, n(umformleammg) k>0
I1.=CTA, C+OA,, W, =W, -, &>0

er) = y()-C2(). N = (CTC+5IT

P is the positive solution (if it exists) for the algebraic Riccati equation given by

(19)

PA + (Z‘o)')TP+PRP+Q 0
R= W.,+A']+A' + KAy KT A7 Fism, Qo >0, A, >0 (20)

O (1 A +0 A )Inm H Qo Z(O). ("(0) +K C) W (W(O)’y A_I”I(O).

4.5. Main results on the estimation process

One of the principles advantages of (17) and of the corresponding learning law (19), it
is the possibility of guaranteeing that both averaged estimation error and weights are
upperly bounded. In fact,

Theorem 1. If there exist positive definite matrices Ag.Ag. Ag g AN.OQy and

positive constants S, k such that the matrix Riccali equation (20) has a positive definite
solution, then the DNN observer (17), supplied by the learning law (19), with any

matrix K, guarantying that A" is stable, that is, A" =P +K,C) is Hurwitz
and K,=AP'\C T A>0 provides the following upper bound for the averaged

estimation error

T
)L"l, .[A' l»d"r"_'flr J( 'r”'{ZCA(’) Jd’< o, @1)

1=0
]0+Y +2Y,+4A nY,, ap = ,{mm(l’,’”zQP"’z)>0

Lemma 1. For the learning law (19) and for any pe(O,/lmi,,(ﬂ)) the following
property holds:

2
T Ilm J C’e
T T A (mﬁp)

1=0 min

(22)

The proofs of theorem 1 and lemma 1 are achieved by means of Lyapunov-like
analysis in [17].
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S. Numerical Example
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In this example the state estimation process of a nuclear reactor via the DNN observer
In first term, to overcome the measuring complexity or else the

(17) is illustrated.

absence of adequate sensors that prevent the off

~line knowledge of all states, the model

(8) with nominal parameters given in the section 2 and with nominal initial condition
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Xo =[no- ﬁ ng.0) where ng = W is used as data generator. The preliminary

training produces the following results:
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Fig. 4. The estimation process for the state X;, (close-up).

perties of the technique presented, the DNN observer (17) is

To show the robustness pro|
g new conditions: First,

proved when the plant model (8) is simulated on the followin
the initial condition is changed such that now %o =[1,10 5 15, 1x107°  where
nd. to model some effects associated with real instrumentation, the plant
output is polluted with a uniformly distributed noise which magnitude is always
approximately 3 % respect to plant output with independence of its level. Third, the
parameter valucs of (8) are changed to a = 0.0097°C™", f=0.0072, A1=0.39425"",
and A=30us (both ¥ and K stay equal). Although, apparently these changes are
small, as it will be seen a Luenberger observer basis on (8) with nominal values of the

section 2 is not able to work satisfactorily on these new conditions (of course, these
changes are supposed to be unknown for the DNN observer). By “try-to-test” method,

the parameters of DNN observer ( 17) are selected as follows:

np=11¥. Secol

K, = [F27,15.-01F , K, = [0.054.-0.037,0.079F, k=12 and
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The results of estimation process are displayed in Figs. 2-6. In Fig. 2 the cstimated state
masks almost completely to the true state x, .« In Fig. 3 the difference between true state

X3, and estimated state %5, is practically imperceptible. However, a closer look
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provided by Fig. 4 illustrates better such difference. Some elements of weight matrix
are presented in Fig. 5. It is important to mention that due to wide range of state values
associated with (8) it is necessary to resort to the normalization of variables in both the
preliminary training and on-line estimation process. Such normalization does not affect
the estimation results. Instead. it permits to the observer (17) works satisfactorily. To
quantify the global performance of an observer, let us define the following

performance index:

!

= [ x,— %, . ds,0y >0,6=0.0l. (23)
(+ed=0"" T

Performance indexes of the observer studied here and a Luenberger observer are shown

in Fig. 6 for comparison.

6. Conclusions

We have studied the use of DNN observers with SM learning law for nuclear reactor
state estimation in the presence of measurement noise and uncertainty. As it was seen
in the numerical example, this technique represents a significant advantage respect to a
simple Luenberger observer. Since it permits the possibility of utilizing reduced order
systems besides guaranteeing the averaged boundness of both the DNN weights and the
estimation error, we conclude that this methodology is promising in nuclear reactor
applications and may constitute the basis for posterior development of efficient

feedback controller designs.
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