
Physical Model-Free Observer for Nuclear Reactors using
Differential Neural Networks with Sliding Mode Learning

J. Humberto Pérez-Cruz and Alexander Poznyak
Department of Automatic Control, CINVESTAV-IPN, AP. 14740, Av. Instituto Politécnico

Nacional No. 2508, C.P. 07360, México D.F., México. Tel.: +(525) 55 5061 37 41,Fax: +(525)
55 5061 39 82.e-mail: jperez,apoznyak@ctrl.cinvestav.mx

(Paper received on August 09, 2006, accepted on September 25, 2006)

Abstract. This paper investigates the problem of uncertain nonlinear state
observation in a nuclear reactor when only the input and the output are available.
The use of a differential neural network observer with sliding mode learning law issuggested. A very simplified model of the system is initially employed for off-linetraining of the neural network. When this process of training has finished, the
observer can dispense with mathematical model completely and can realize the on-
line state estimation within small margin of error despite uncertainty and noise. The
efficiency of this technique is illustrated by simulation.

1. Introduction

Nuclear reactors are inherently nonlinear and very complex systems with time-varying
parameters depending on a level power, fuel burnup, Xenon isotope production, among
others factors. When, in this kind of systems, state observation is required, it is mostly
used for two purposes: feedback control and fault detection. In these tasks, the observer
employed has often been linear [1], [2]; consequently, its performance is only
satisfactory in a small neighborhood of the operation point of the reactor. Nevertheless,
if large variations of the system variables are presented, the previous option is not
effective any more and some nonlinear state observer is required. In real situations,
state estimation turns out to be a non trivial problem because, besides nonlinearity.
variation of parameters, uncertainty and inclusive measurement noise must be
considered. Moreover, even though parameters were constant, peculiarity of nuclear
reactor model prevents its transformation into the, so-called, companion form; hence,
common robust techniques such as high gain observers [3] can not be applied.
Nonetheless, under these conditions, it is still possible to obtain an acceptable
observation using others robust techniques among which it is worth mentioning neural
networks (NN) and sliding modes (SM).

NN are an approach that has generated great enthusiasm as a consequence of their
capability of functioning adequately despite a partially (or inclusive totally) incomplete
information about plant model. NN could be classified as static (feedforward) or as
differential (recurrent) ones [4]. In the first kind of networks, a system dynamics is
approximated by a static mapping: therefore, the network outputs are uniquely
determined by the current inputs and the weights. In contrast, differential neural
networks (DNN) incorporate feedback in their structure. So, they overcome many
problems associated with first ones such as global extrema search. Furthermore, DNN
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have better properties of approximation.

In recent years, it has been proposed to use neural networks in nuclear reactors

particularly for control [5-9] but generally the networks employed have been static or

else, in many cases, they have lacked a rigorous proof of stability.

On the other hand, during the last two decades, SM have emerged as other

powerful tool for control, identification, and estimation in uncertain environments.

Basically, SM consist of the application of a discontinuous control action for reaching

and maintaining the dynamics of a system on the, so-called, sliding surface. The major

advantages of SM are: low sensitivity to plant parameter variations and disturbance,

fast transient behavior, and exponential converge
nce [10]. However, despite these

advantages, only a few applications of this technique have been reported in nuclear

literature. So, in [11] a SM observer is used for estimating the external reactivity and

the xenon concentration. In [12] is discussed a feedback controller based
 on SM

observer for a space nuclear reactor.

In spite of fruitful research in DNN and SM, very few authors have considered the

possibility of combining the advantages from these two 
techniques for obtaining an

observer with better performance [13] and none, to ou
r knowledge, has considered

apply this "sliding neuro observer" to field of nuclear processes. Thereby, in this paper,

it is suggested to estimate nuclear reactor states usi
ng a special kind of DNN which

incorporate a switching correction term in their s
tructure and also a sliding mode

learning law. Since only the input and the output of reactor are available, a simplified,

but imprecise, mathematical model of system is utilized for off-line initial training of

DNN. When this process of training has finished, the observer can work without any

mathematical model and can realize the on-line state estimation within small mar
gin of

error despite uncertainty and noise. The workability of suggested approach is illustrated

by a simulation example.

2. Mathematical Model

In general, the nuclear reactor dynamics is described by the following so-called point

kinetics equations with six delayed neutron precursor groups [14]:

=P-B+
i=1

В.
Can-acin il...

(1)

(2)

where n, is the neutron power (W), C,, is the power of the ith group delayed neutron

precursor (W), p, is the total reactivity, A is the effective prompt neutron lifetime (s), 2,

is the radioactive decay constant of ith group neutron precursor (s), ẞ, is the fraction

of ith group delayed neutrons, and Bis the total delayed neutron fraction (B={, ¡B,). It

is important to mention that the six group point kinetics equations (1) and (2) are in

reality a set of seven ordinary differential equations; accordingly, their manipulation

can result difficult. However, it is possible to reduce the system order by combining the
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provided by Fig. 4 illustrates better such difference. Some elements of weight matrix

are presented in Fig. 5. It is important to mention that due to wide range of state values

associated with (8) it is necessary to resort to the normalization of variables in both the

preliminary training and on-line estimation process. Such normalization does not affect

the estimation results. Instead, it permits to the observer (17) works satisfactorily. T
o

quantify the global performance of an observer, let us define the following

performance index:

J, = Lx-ds,Qo >0,€ = 0.01.
1+3

(23)

Performance indexes of the observer studied here and a Luenberger observer are shown

in Fig. 6 for comparison.

6. Conclusions

We have studied the use of DNN observers with SM learning law for nuclear reactor

state estimation in the presence of measurement noise and uncertainty. As it was seen

in the numerical example, this technique represents a significant advantage respect to a

simple Luenberger observer. Since it permits the possibility of utilizing reduced order

systems besides guaranteeing the averaged boundness of both the DNN weights and the

estimation error, we conclude that this methodology is promising in nuclear reactor

applications and may constitute the basis for posterior development of 
efficient

feedback controller designs.
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